Neuroimaging technique may help predict autism among high-risk infants


Functional connectivity magnetic resonance imaging (fcMRI) may predict which high-risk, six-month old infants will develop autism spectrum disorder by age two years, according to a new study.

Autism affects roughly 1 out of every 68 children in the United States. Siblings of children diagnosed with autism are at higher risk of developing the disorder. Although early diagnosis and intervention can help improve outcomes for children with autism, there currently is no method of diagnosing the condition before children show symptoms.

Previous findings suggest that brain-related changes occur in autism before behavioral symptoms emerge. If future studies confirm these results, detecting brain differences may enable physicians to diagnose and treat autism earlier than they do today.

Said Diana Bianchi, MD, Director of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD).

In the current study, a research team led by National Institutes of Health-funded investigators at the University of North Carolina at Chapel Hill and Washington University School of Medicine in St. Louis focused on the brain’s functional connectivity — how regions of the brain work together during different tasks and during rest.

Using fcMRI, the researchers scanned 59 high-risk, six-month-old infants while they slept naturally. The children were deemed high-risk because they have older siblings with autism. At age two years, 11 of the 59 infants in this group were diagnosed with autism.

The researchers used a computer-based technology called machine learning, which trains itself to look for differences that can separate the neuroimaging results into two groups — autism or non-autism — and predict future diagnoses.

One analysis predicted each infant’s future diagnosis by using the other 58 infants’ data to train the computer program. This method identified 82 per cent of the infants who would go on to have autism (nine out of 11), and it correctly identified all of the infants who did not develop autism. In another analysis that tested how well the results could apply to other cases, the computer program predicted diagnoses for groups of 10 infants, at an accuracy rate of 93 per cent.

Although the findings are early stage, the study suggests that in the future, neuroimaging may be a useful tool to diagnose autism or help health care providers evaluate a child’s risk of developing the disorder.

Said Joshua Gordon, MD, PhD, National Institute of Mental Health (NIMH) Director.

Overall, the team found 974 functional connections in the brains of six-month-olds that were associated with autism-related behaviours. The authors propose that a single neuroimaging scan may accurately predict autism among high-risk infants, but caution that the findings need to be replicated in a larger group.


About Contributors

Special World, from Inclusive Technology, is a free website linking 125,000 special education teachers, speech therapists and occupational therapists in 150 countries. Special World readers and contributors work with children who have additional needs or special educational needs including those with severe, profound and multiple learning difficulties and disabilities.

Leave A Reply